
Page 16	 FoxRockX� March 2009

When I started using FoxBase+, there were two 
kinds of variables available: public and private. If 
you did nothing, any variables you used in code 
were private. Since that was the most restrictive 
scope available, it was easy to get into the habit of 
not declaring variables unless they were public.
VFP 3 changed the rules by introducing local 
scope for variables. Local is more restrictive than 
private, but has to be explicitly declared. What do 
the three scopes mean and how do they work?

Public variables are available everywhere un-
less you define a private or local variable with the 
same name at a lower level (in earlier versions of 
Fox, you couldn’t redefine a public variable with-
out releasing it first, but that’s no longer true). To 
define public variables, use the PUBLIC keyword. 
The variables are created and set to .F.

Private variables are available in the routine 
where they’re created and any routine called by 
that one (all the way down the call chain) unless 
something in the calling chain declares a local or  
private variable with the same name. To declare a 
private variable, use the PRIVATE keyword. How-
ever, unlike PUBLIC and LOCAL, doing so does 
not create the variable; it just reserves the name as 
private. You still have to actually assign a value to 
it, in order to create it. Listing 1 (included in this 
month’s downloads as PrivateDoesNotCreate.
PRG) demonstrates this. The variable cPrivate, de-
clared private, but not created in the main program, 
is not the same cPrivate as in the subroutine. When 
you attempt to display the value of cPrivate after 
the call, an error is generated.

Listing 1. Declaring a variable PRIVATE doesn’t create the 
variable.

* Declaring a variable private doesn't create 
* the variable, it just reserves the name as 
* private.

PRIVATE cPrivate

DO SubProc

ON ERROR WAIT WINDOW MESSAGE()
* The next line generates an error
?m.cPrivate
ON ERROR 

RETURN

PROCEDURE SubProc

* The variable here is private (because it's 
* not declared) but it's not the same variable 
* as in the main program

cPrivate="abc"
?m.cPrivate

RETURN

Local variables are available only in the routine 
where they’re declared. To define a local variable, 
use the LOCAL keyword. The variable is created 
and set to .F.

The best practice is to use local variables for 
everything, unless you can identify a specific need 
for a broader scope. Most VFP experts recommend 
using only a single private variable in applications. 
That variable (often called goApp) holds an object 
reference to an application object, and is declared 
private in the application’s main program. Defin-
ing the variable as private in the main program is 
sufficient to make it available throughout the ap-
plication.

The problem with using public or private vari-
ables is that they make it too easy for one piece of 
code to accidentally break another. If one program 
(or class or form or report) depends on a particular 
variable that isn’t passed as a parameter, and an-
other program (or class or form) changes that vari-
able, the first routine may no longer work.

By using only local variables and requiring all 
communication between routines to happen either 
through parameters or through properties of ob-
jects passed as parameters, code in one part of an 
application is protected from other parts of the ap-
plication. (This is, in essence, what encapsulation is 
all about).

The application object is typically the exception 
here, and is often used to communicate between 
different parts of the application. Even so, it’s best 
if other parts of the application check for the ap-
plication object’s existence and work through its 
methods, rather than modifying application object 
properties directly. Limiting non-parameter com-
munication to that provided by the application ob-
ject also means that you know where to look when 
problems occur.

The Scope of Things
Using the right scope for variables makes your code stronger.

Tamar E. Granor, Ph.D.



March 2009	 FoxRockX� Page 17

Arrays and scope 
Like other variables, arrays can be public, private 
or local. But unlike other variables, arrays have to 
be declared. To create a public or local array, you 
declare it like any other variable, just adding the 
dimensions, such as PUBLIC aPublic[2,4] or LO-
CAL aLocal[17]. In both cases, there’s an optional 
ARRAY keyword. 

To declare an array private, however, the PRI-
VATE keyword isn’t sufficient. Instead, you use ei-
ther the DIMENSION or the DECLARE keyword, 
as in Listing 2. Of course, you should choose one 
keyword or the other and use it every time.

Listing 2. To create a private array, use either DIMENSION or 
DECLARE.
DIMENSION aPrivate[10,3]
DECLARE aAlsoPrivate[100]

There’s one confusing item. Once you create an 
array with whatever scope you choose, issuing DI-
MENSION or DECLARE simply reshapes it; these 
commands don’t change the array’s scope. This 
actually makes sense when you consider what’s 
really happening. If you use DIMENSION or DE-
CLARE for an array that doesn’t already exist, it’s 
the same as using any other undeclared variable; it 
gets created as private. However, if you’ve already 
established the array’s scope, it keeps that scope.

The same rule applies to the arrays created by 
VFP’s “A” functions. There’s a large set of functions 
(whose names all begin with the letter “A”) that re-
trieves some information and puts it into an array. 
For example, APrinters() gets the list of available 
printers, while AFields() gets the list of fields in a 
table. For all these functions, if the array already 
exists, it keeps its original scope. If the function cre-
ates the array, it’s declared private.

As with scalar variables, avoid public arrays 
entirely, and keep private arrays to a minimum. 
Declare array variables local.

Passing parameters 
There are two issues related to parameters where 
things have changed over the years: scope and fig-
uring out how many parameters were passed.

In early Fox days, parameters received by a 
function or procedure were always private. That 
is, the command PARAMETERS x, y, z creates x, y 
and z as variables private to the routine. When local 
scope was added in VFP 3, we also got the LPA-
RAMETERS command, which lets you indicate that 
the variables created to receive parameters should 
be scoped as local. Listing 3 shows both forms. 

Listing 3. PARAMETERS defines private variables, while 
LPARAMETERS defines local variables. LPARAMETERS is a 
better choice.
PROCEDURE HasPrivateParams

PARAMETERS nFirst, cSecond

PROCEDURE HasLocalParams
LPARAMETERS nFirst, cSecond

You can also define parameters without using 
either keyword by including them in the proce-
dure, function or method header, as in Listing 4. 
Parameters declared this way are local.

Listing 4. Parameters listed in the header are local.
PROCEDURE ParamsInHeader(cSomething, ;
                         nSomethingElse)

Making parameters local is always a better 
choice than making them private, for the same 
reasons that local variables are better than private 
variables. 

Counting parameters
Occasionally, a routine needs to know how many 
parameters were actually passed to it, so that it 
can behave appropriately. FoxPro has had the PA-
RAMETERS() function since the early days to pro-
vide that information. In FoxPro 2.6, the PCOUNT() 
function was added “for dBase compatibility.” 

Unlike most of the functions so tagged, howev-
er, the dBase version is superior to the Fox version. 
The value returned by PARAMETERS() is reset ev-
ery time another routine is called, including when 
ON KEY LABEL fires. So unless you grab the value 
as soon as you get into a routine and store it, the 
result can be wrong. In fact, because an ON KEY 
LABEL can fire at any time, even storing the return 
value of PARAMETERS() as the first executable 
line of a routine can occasionally fail. PCOUNT(), 
on the other hand, always returns the number of 
parameters passed to the currently executing rou-
tine.

Listing 5 demonstrates the difference between 
the two functions; this program is included in the 
downloads as CountingParameters.PRG. When 
you run this code, you get the output shown in List-
ing 6.

 

Listing 5. Use PCOUNT() rather than PARAMETERS() to de-
termine how many parameters were passed. 
* Demonstrate PARAMETERS() vs. PCOUNT()

Subproc("abc", 123)

RETURN

PROCEDURE Subproc(cParm1, nParm2)
? "Immediately on entry to Subproc"
? "  PARAMETERS() returns ", PARAMETERS()
? "  PCOUNT() returns ", PCOUNT()

Subsubproc()

? "After call to Subsubproc"
? "  PARAMETERS() returns ", PARAMETERS()
? "  PCOUNT() returns ", PCOUNT()



Page 18	 FoxRockX� March 2009

RETURN

PROCEDURE Subsubproc

* No code needed here to demonstrate
* the point

RETURN

Listing 6. PCOUNT() returns the same value no matter where 
you call it in the routine. The result of PARAMETERS() depends 
on what else has happened.
Immediately on entry to Subproc
  PARAMETERS() returns    2
  PCOUNT() returns    2
After call to Subsubproc
  PARAMETERS() returns    0
  PCOUNT() returns    2

Keep it local
If you’re careful writing your code, does scope re-
ally matter? It does for several reasons.

An application I’m currently working on has a 
timer to process incoming data. Now and then, we 
were seeing strange behavior. We tracked it down 
to having undeclared (thus, private) variables 
in both the straight-line code and the timer code. 
When the incoming data was processed, changes to 
variables in the processing code called by the timer 
were clobbering same-named variables in the other 
code. As soon as we made sure that all variables 
were declared local, the problems went away.

Even if you’re not using a timer, in a modern, 
event-driven application, you can’t predict the or-
der in which your code will execute and thus can’t 

be sure that code in one method won’t interfere 
with code in another.

Another reason to aim for local wherever possi-
ble is that code you write today may be running for 
years to come. (Right now, I’m maintaining some 
applications that were written as much as a dozen 
years ago). Even if you have clear naming conven-
tions and standards when you write the code, the 
chances are good that over time, the code quality 
will decline. Anything you can do up front to pre-
vent problems down the road is a good idea.

The bottom line with scope is that everything 
that can be local should be local. If you find yourself 
looking for private or public variables, revisit your 
design to see where you should be passing param-
eters or adding things to your application object.

Author Profile
Bio: Tamar E. Granor, Ph.D., is the owner of Tomorrow's So-
lutions, LLC. She has developed and enhanced numerous Vi-
sual FoxPro applications for businesses and other organiza-
tions. She currently focuses on working with other developers 
through consulting and subcontracting. Tamar is author or 
co-author of nine books including the award winning Hack-
er's Guide to Visual FoxPro and Microsoft Office Automation 
with Visual FoxPro. Her most recent books are Taming Visual 
FoxPro's SQL and What's New in Nine: Visual FoxPro's Latest 
Hits. Her books are available from Hentzenwerke Publishing 
(www.hentzenwerke.com). Tamar is a Microsoft Certified Pro-
fessional and a Microsoft Support Most Valuable Professional. 
Tamar speaks frequently about Visual FoxPro at conferences 
and user groups in North America and Europe, including ev-
ery FoxPro DevCon since 1993. You can reach her at tamar@
thegranors.com or through www.tomorrowssolutionsllc.com.

FoxRockX™(ISSN-1866-4563) FoxRockX is published bimonthly by ISYS GmbH

dFPUG c/o ISYS GmbH
Frankfurter Strasse 21 B
61476 Kronberg, Germany
Phone +49-6173-950903
Fax +49-6173-950904
Email: foxrockx@dfpug.de
Editor: Rainer Becker

Copyright © 2009 ISYS GmbH. This work is an independently produced publi-
cation of ISYS GmbH, Kronberg, the content of which is the property of ISYS 
GmbH or its affiliates or third-party licensors and which is protected by copyright 
law in the U.S. and elsewhere. The right to copy and publish the content is reser-
ved, even for content made available for free such as sample articles, tips, and 
graphics, none of which may be copied in whole or in part or further distributed 
in any form or medium without the express written permission of ISYS GmbH. 
Requests for permission to copy or republish any content may be directed to Rai-
ner Becker. 

FoxRockX, FoxTalk 2.0 and Visual Extend are trademarks of ISYS GmbH. All product names or services identified 
throughout this journal are trademarks or registered trademarks of their respective companies.

DOWNLOADS
Subscribers can download FR200903_code.zip in the SourceCode sub directory of the document portal. It 
contains the following files:
doughennig200903_code.zip
Source code for the article “Creating Explorer Interfaces in Visual FoxPro, Part 2” from Doug Hennig
tamargranor200903_code.zip
Source code for the article “The Scope of Things” from Tamar E. Granor.


